
Transport in nanoscale systems: the microcanonical versus grand-canonical picture

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 8025

(http://iopscience.iop.org/0953-8984/16/45/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 19:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/45
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 8025–8034 PII: S0953-8984(04)83882-7

Transport in nanoscale systems: the microcanonical
versus grand-canonical picture

M Di Ventra1 and T N Todorov2

1 Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319, USA
2 School of Mathematics and Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK

E-mail: diventra@physics.ucsd.edu and t.todorov@qub.ac.uk

Received 20 July 2004, in final form 29 September 2004
Published 29 October 2004
Online at stacks.iop.org/JPhysCM/16/8025
doi:10.1088/0953-8984/16/45/024

Abstract
We analyse a picture of transport in which two large but finite charged
electrodes discharge across a nanoscale junction. We identify a functional
whose minimization, within the space of all bound many-body wavefunctions,
defines an instantaneous steady state. We also discuss factors that favour the
onset of steady-state conduction in such systems, make a connection with the
notion of entropy, and suggest a novel source of steady-state noise. Finally,
we prove that the true many-body total current in this closed system is given
exactly by the one-electron total current,obtained from time-dependent density-
functional theory.

When a metallic nanojunction between two macroscopic electrodes is connected to a battery,
electrical current flows across it3. The battery provides, and maintains, the charge imbalance
between the electrode surfaces needed to sustain steady-state conduction in the junction. This
static non-equilibrium problem is usually described according to the Landauer picture [1].
In this picture, the junction is connected to a pair of defect-free metallic leads, each of
which is connected to its own distant infinite heat-particle reservoir. The pair of reservoirs
represents the battery. Each reservoir injects electrons into its respective lead with the
electrochemical potential appropriate to the bulk of that reservoir. Each injected electron
then travels undisturbed down the respective lead to the junction, where it is scattered and is
transmitted, with a finite probability, into the other lead. From there it flows, without further
disturbance, into the other reservoir. The reservoirs are conceptual constructs which allow
us to map the transport problem onto a truly stationary scattering one, in which the time
derivative of the total current, and of all other local physical properties of the system, is zero.
By doing so, however, we arbitrarily enforce a specific steady state whose microscopic nature
is not, in reality, known a priori. The Landauer construct is highly plausible in the case of
non-interacting electrons. In the case of interacting electrons, however, it is not at all obvious

3 Here we consider DC bias conditions. Similar considerations, however, apply to the AC case, that is, periodic
time-varying disturbances of the charge.
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Figure 1. A nanoscale junction between two large but finite metallic charged electrodes. The
details are discussed in the text.

that the steady state in the Landauer picture is the same as that which would be established
dynamically by the electrons originating from the battery and flowing across the junction. It is
also not obvious whether the same steady state can be reached with different initial conditions
or if it can be realized with microscopically different many-body states.

There is, however, an alternative picture of DC conduction. In that picture, we dispense
with the battery and we think of the current as a long-lived, but ultimately transient, discharge
of a macroscopic, but finite, capacitor [2–5]. This view has great appeal. We now have a
finite system, with a finite number of electrons and nuclei. This system can be visualized
and realized practically. It can be described dynamically, at least in principle, by solving
a finite, closed set of equations of motion for the particles in the system. In this picture,
the system is allowed to find its own electronic structure during the discharge, without the
imposition of a priori assumptions about what this electronic structure should look like. This
‘microcanonical’ picture, in which the conventional notion of transport as an open-boundary,
‘grand-canonical’ problem is replaced by the idea of a long-lived discharge of an isolated finite
system, is represented schematically in figure 1. In keeping with the microcanonical framework
that we are interested in, we do not introduce dissipative effects in this system [5–7].

The purpose of this paper is twofold. First, we seek to establish a mapping of the
conventional steady-state transport problem onto the present microcanonical one. To this
end, we define in variational terms a class of dynamical states for the closed geometry in
figure 1 that we call instantaneous global quasi-steady states. We then give arguments for their
robustness. Second, we demonstrate that the exact total current (as opposed to current density)
in the true interacting many-electron system is identical to the one-electron current, obtained
from time-dependent density-functional theory (TDDFT) [8]. The closed, finite nature of the
system is a requirement for this demonstration. The result is valid throughout the time evolution
of the electronic system, regardless of whether or not the system gets anywhere near a steady
state. This result places on a rigorous footing the application of time-dependent one-electron
methods to transport in nanoscale systems.
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Our motivation is the tremendous physical and computational appeal of the resultant
microcanonical picture of conduction: it gives us, in principle, a formally exact, dynamical
description of many-electron transport within a one-electron picture. It does so, furthermore,
in a way that eliminates the numerically cumbersome implementation of scattering boundary
conditions and the unphysical notion of infinite systems that continually plague one in the
traditional static approach to transport.

Before discussing the closed system in figure 1, let us return to the transport problem in
the open-boundary approach. In the self-consistent steady state, a net electron current from
one electrode into another across a nanojunction is accompanied by an excess of electrons
in one electrode and a deficit of electrons in the other [9]. These charges take the form of
surface charge densities, present within a screening length of the electrode surface. Thus,
steady-state conduction goes hand in hand with surface charges on each side of the junction: a
negative sheet of charge on one side and a positive sheet on the other, as if two infinite capacitor
plates were present. The transport problem can then be viewed as a continuous attempt by the
electrons to ‘passivate’ the surface charges on each side of the junction. In other words, the
steady-state transport problem in the traditional open-boundary approach is, effectively, the
continuous discharge of an infinite capacitor.

In real life there is no such thing as an infinite capacitor. We must therefore consider
the discharge of a finite, though possibly very large, capacitor. If C is its capacitance and
R is the resistance across which it discharges, then, according to classical circuit theory, the
discharge will take place over a characteristic time RC . The larger C , for a given R, the more
stationary the properties of the system will appear, in a temporally local sense, at any one stage
of the discharge. This ultimately transient, but very slowly varying, conducting state indeed
encapsulates the intuitive picture of a DC steady state that we all have.

There are standard time-dependent approaches that allow the DC steady state, in the limit
of infinite system size, to be described from a microscopic point of view. One such approach is
linear response theory. Here, we imagine that the electrons in the electrode–junction–electrode
system start off in the ground state. Then, at some initial time t = 0, a static external electric
field (which need not be uniform) is applied, and the electronic response for t > 0 is calculated
to first order in the applied field. If we take the size of the electrodes to infinity (at least in
the longitudinal direction) and then take the limit t → ∞, with the further assumption that
the electrons are non-interacting, we may follow the arguments of Stone and Szafer [10] to
obtain the two-probe one-electron Landauer formula G = (2e2/h)Tr{tt†}, where G is the
conductance and t is the transmission matrix. The two-probe Landauer formula can therefore
be thought of as describing the steady state of a system of non-interacting electrons flowing
between two infinitely large electrodes, under an external field. However, this approach is of
no use to us here because it explicitly requires the system size to be taken to infinity, which is
specifically what we do not wish to do. We observe also that this approach does not take account
of electron–electron interactions. Of course, formally, one may write down the linear response
calculation in many-body form, but the result is in general intractable. If, on the other hand,
we choose the one-electron route of TDDFT, then in the linear response calculation, on top of
the external field, we must include the additional time-varying one-electron potential due to
the dynamical evolution of the electron density itself. It then stops being obvious whether, and
in what form, the one-particle Landauer formula would survive. While the possible resultant
corrections to the open-boundary Landauer formula constitute a very interesting line of work,
the above approach to the steady state, once again, falls beyond our goals here, because of our
specific concern with finite systems.

An alternative dynamical approach, in a minimal discrete real-space basis set [4], would be
to start with two charged but electronically decoupled electrodes, connect them by a junction
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and follow the ensuing discharge [11]. If once again we take the system size to infinity
and then take the limit t → ∞, while treating the electrons as non-interacting, then we
would end up solving the usual stationary Lippmann–Schwinger equation for the one-electron
wavefunctions in an open-boundary system [9, 12]. This approach would once again result
in the standard one-electron transport formulae [4, 11]. However, this approach does not
help us here for the same reason as above: it relies on taking the system size to infinity. By
analogy with the earlier remarks, we note that if we include electron–electron interactions in
the time-dependent calculation in the form of an additional dynamical one-electron potential
that depends on the time-evolving electron density, then it is not obvious that the resultant
infinite-system, long-time behaviour would be the same as the self-consistent solution in the
standard time-independent one-electron scattering open-boundary approach, in which one
solves the one-electron static Lippmann–Schwinger equation iteratively and self-consistently,
with a given functional relation between density and one-electron potential, and with given
fixed incoming one-electron distribution functions [4].

We now return to our finite isolated system in figure 1. We release the electrons from an
arbitrary but definite initial state, characterized by a charge imbalance between the electrodes.
We thenceforth allow the electrons to propagate dynamically. After an initial transient time
(related to the initial state of the electrons and to the electron–electron relaxation time inside
the capacitor plates) during which electrons and holes first start to traverse the nanojunction
from opposite sides, we expect a quasi-steady state to be established. We expect it to persist
until the time when multiple electron reflections off the far boundaries of the system begin
to develop. From then on, the electronic system will oscillate in time among several many-
body states forever, if we neglect dissipative effects, as we do here4. We are interested in the
intermediate quasi-steady state.

Our first task is to define this quasi-steady state in variational terms. By appealing to the
intuitive concept of a steady state in the case of a macroscopic classical capacitor, considered
earlier, we adopt the view that a steady state is one in which the temporal variation of local
properties is minimal. A measure of temporal variations is provided by the functional

A[ρ] =
∫ t2

t1

dt
∫

all space
dr

(
∂ρ(r, t)

∂ t

)2

(1)

where ρ(r, t) is the density of the electron gas in the system depicted in figure 1 and (t1, t2) is
some time interval of interest. Let us first perform an unconstrained variational minimization
of A with respect to ρ, for a given ρ(r, t1) and ρ(r, t2). The result is

∂2ρ(r, t)

∂ t2
= 0, ∀r, ∀t ∈ (t1, t2). (2)

To interpret this result, let us consider the total current, IS , through an open surface S across
the electrode–junction–electrode system, as shown in figure 1:

IS = IS(t) =
∫

S
j(r, t) · dS (3)

where j(r, t) is the current density of the electrons. We close S in the vacuum, as is indicated
by the dashed part of the curve in figure 1, sufficiently far from the boundaries of the system to
enable us to ignore any contributions to the surface integral over the dashed part of the curve5.

4 If we do allow dissipative effects [5], then a finite system is expected to reach a truly time-indepedent steady state,
in the course of its evolution. If the system is infinite, then this could be a current-carrying steady state.
5 Here we assume, as we will do again later, that all electrons are bound within the electrode–junction–electrode
system, so that the charge and current densities are exponentially small into the vacuum, at all times.
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By using the continuity equation

∇ · j(r, t) +
∂ρ(r, t)

∂ t
= 0 (4)

and by invoking Gauss’s theorem, we find

d IS(t)

dt
= −

∫
V

dr
∂2ρ(r, t)

∂ t2
(5)

where V is the volume bounded by S, which we take to completely envelop one of the electrodes,
as shown in the figure. From equation (5) we see that, under the conditions expressed by
equation (2),

d IS(t)

dt
= 0, ∀S. (6)

Equation (6) by itself says nothing about the actual value of IS(t) or about the dependence
of IS(t) on S. Equation (6) simply describes a generic type of conducting state in which
matter (in this case electrons) is being transferred from region to region at a steady rate. We
define such a state as a true global steady state. We have seen that such states are minima of
the quantity A in equation (1). If we write t2 − t1 = δt > 0 and use the above procedure
for smaller and smaller δt , then in the limit δt → 0 we would obtain a weaker version of
equation (2), with reference to a single instant in time. This instantaneous form of equation (2)
defines a type of conducting state that we call a true instantaneous global steady state.

We observe that we could start from equation (6) as the mathematical definition of a true
steady state, and seek a density functional whose minimization generates such steady states.
We would then work our way back to equation (2), look for a functional such that equation (2)
is its corresponding Euler–Lagrange equation of motion, and arrive at equation (1).

The minimization procedure applied to A above treatsρ(r, t) as a freely adjustible function
of time, without regard for the actual physical dynamical laws governing the electrons. We
did invoke the continuity equation, which is a physical equation, but we did so in interpreting
the results of the minimization of A, not in the minimization itself. A real gas is governed
by microscopic dynamical equations, which may not permit the system to attain a true
instantaneous global steady state, as defined above. Our next task, therefore, is to seek the
dynamical state closest to a true instantaneous global steady state, permitted by the laws of
motion that govern our system.

We choose quantum mechanics as the dynamical law in question. Our electrons then are
described by a many-body state vector |ψ(t)〉, governed by the time-dependent Schrödinger
equation

ih̄
d|ψ(t)〉

dt
= H |ψ(t)〉, |ψ(0)〉 = |ψ0〉 (7)

where H is the many-body electron Hamiltonian. For the moment, we regard the initial
condition |ψ(0)〉 = |ψ0〉 as a parameter. The electron density and current density are given by

ρ(r, t) = 〈ψ(t)|ρ̂(r)|ψ(t)〉 (8)

j(r, t) = 〈ψ(t)|ĵ(r)|ψ(t)〉 (9)

where ρ̂(r) and ĵ(r) are the many-body electron number-density and current-density operators,
respectively. The time-dependent Schrödinger equation—our chosen dynamics—guarantees
equation (4).6 We may build this dynamical property of the system into the functional that

6 In fact, the current-density operator in quantum mechanics is specifically constructed so that the continuity equation
is obeyed, but, with quantum mechanics already in place, this does not affect our logic here.
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we have chosen as a measure of how close our system is to a steady state, by replacing
(∂ρ(r, t)/∂ t)2 in equation (1) by (∇ · j(r, t))2.

We now define the instantaneous dynamical state closest to a true steady state by the
following variational procedure. Consider all possible evolutionary paths, allowed by the
dynamics of the system, in a small time interval (t1, t2). Of these, consider those that have a
given total energy E and a given total number of electrons N . (In our microcanonical picture
E and N are constants of the motion.) Of those, consider the evolutionary paths that produce
a given average current IS , during the interval (t1, t2), across a given open surface S. Of those,
we seek that evolutionary path that minimizes A in equation (1).

Let B be defined by A = Bδt , δt = t2 − t1. Then, in the limit of vanishing δt , the above
search is equivalent to minimizing (with the same constraints) the instantaneous functional, at
time t = t1 = t2,

B = B[|ψ(t)〉] =
∫

all space
dr (∇ · j(r, t))2 (10)

with j(r, t) given by equation (9). Thus, we write E = 〈ψ(t)|H |ψ(t)〉, and we put

|ψ(t)〉 =
∑

i

ci |ψi〉 (11)

where {|ψi〉} are all N-electron bound states of the system in figure 1, with eigenenergies
{Ei}, and {ci} are expansion coefficients. The reason for restricting the expansion to the bound
part of the spectrum of H is that we do not wish to allow ionization of the electron–junction–
electrode system. Ionization would correspond to the escape, through the vacuum, of some
finite electronic charge to infinity and, therefore, would not correspond to the experimental
realization of DC transport. We substitute the expansion in equation (11) into (9), and thence
into (10). We then seek minima, with respect to {ci}, of

B[{ci}] =
∑

i,i ′,i ′′,i ′′′
c∗

i ci ′ c∗
i ′′ ci ′′′

∫
all space

dr (∇ · jii ′(r))(∇ · ji ′′i ′′′(r)) (12)

where jii ′(r) = 〈ψi |ĵ(r)|ψi ′ 〉, subject to the constraints

IS =
∑
i,i ′

c∗
i ci ′

∫
S

jii ′(r) · dS (13)

E =
∑

i

c∗
i ci Ei (14)

∑
i

c∗
i ci = 1. (15)

Each solution for |ψ〉 = ∑
i ci |ψi〉 is an instantaneous many-body state, call it |ψ(E, IS , t)〉,

containing only electrons bound within the electrode–junction–electrode system in figure 1,
that produces a given current IS and a given total energy E , while globally minimizing the
divergence of the current density. The time t is not part of the actual variational procedure
that generates the state |ψ(E, IS, t)〉. This state is just a snapshot. We assign a time t to the
snapshot, for the sake of being able to relate the steady state in the snapshot to a definite initial
condition, at an arbitrary but definite initial time t = 0.

We call the solution |ψ(E, IS, t)〉 an instantaneous quasi-steady state: the best our finite
system can do to mimic a true instantaneous global steady state. We may now explicitly write
the initial condition required for the given instantaneous quasi-steady state as

|ψ0(E, IS)〉 = eiH t/h̄ |ψ(E, IS, t)〉. (16)
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This minimization procedure may lead to more than one quasi-steady-state solution
|ψ(E, IS, t)〉 for a given E and IS ; in other words, there may be different (in terms of charge
and current densities) microscopic realizations of the same steady-state current. There may be
combinations of E and IS for which no solution for |ψ(E, IS, t)〉 exists. Finally, there may be
initial conditions |ψ0〉 that do not ever lead to a quasi-steady state, i.e. that cannot be reached
by back-propagation from any |ψ(E, IS, t)〉.

The variational nature of the quasi-steady state enables us to draw the following conclusion.
At a quasi-steady state |ψ(E, IS, t)〉, B is, by construction, stationary against variations of |ψ〉
about |ψ(E, IS, t)〉, compatible with the constraints. But B is a measure of the magnitude of the
divergence of the current density, at least in a macroscopically averaged sense. Thus, we may
expect the quasi-steady-state flow pattern itself to be relatively insensitive to variations about
|ψ(E, IS, t)〉, at least on a coarse-grained scale. However, after back-propagation to t = 0,
the corresponding spread of initial conditions, about |ψ0(E, IS)〉, may contain large variations
in microscopic quantities such as the charge density. In other words, there may be ‘pockets’
of initial conditions (in Hilbert space), which we denote symbolically by P0(|ψ(E, IS, t)〉),
that differ in their microscopic properties but that produce the same, or nearly the same, quasi-
steady-state flow pattern at some later time t . This conclusion supports the intuitive notion
that the steady state should be relatively insensitive to the microscopic detail in the initial
conditions. This conclusion also suggests a link with the notion of entropy. The likelihood
of a system with a given total energy E attaining a steady state, |ψ(E, IS, t)〉, with a given
total current IS at time t , and the stability of this steady state against small perturbations, is
measured by the relative weight (in Hilbert space) of the ‘pocket ’ P0(|ψ(E, IS, t)〉), among
all initial conditions that lead to the current IS at t .

To develop this idea further, suppose that, for a given E and IS , we found several distinct
quasi-steady states |ψ(E, IS, t)〉. We postulate that the quasi-steady state |ψ(E, IS, t)〉, which
would be observed, or preferentially observed, in a macroscopic experiment on the system at
time t , is that whose ‘pocket’ P0(|ψ(E, IS , t)〉)has the largest statistical weight. In other words,
the system is driven towards a specific microscopic quasi-steady state at time t by a ‘maximum-
entropy principle’, where the ‘entropy’ measures the number of different initial conditions that
realize the given steady state. The ‘entropy’ introduced here both has a classical thermodynamic
meaning and contains the system dynamics through the minimization procedure. The present
maximum-entropy principle is a reinterpretation, in the terms of the present microcanonical
picture, of the approach used in reference [13] in the grand-canonical case, in a mean-field
one-electron picture (see also reference [14]).

There may exist quasi-steady-state solutions that have the same E but different IS . The
simplest interpretation of such solutions is that they represent different degrees of the discharge
of the system. Thus, if we assign the same t to them, their respective initial conditions
would correspond to different initial voltage drops in the system. Alternatively, if we insist
that their initial conditions have the same, or comparable, voltage drops, then steady-state
solutions with different IS would correspond to different t . This does not mean, however,
that steady states with the same E but with different IS are necessarily connected by a single
continuous evolutionary path: one solution may or may not occur as a dynamical evolution of
another. However, there may in fact be cases where solutions with the same E but different
IS describe steady states of different currents at the same time t corresponding to the same
voltage drop. Such instances correspond to chaotic transport and may occur in systems with
intrinsic nonlinear dynamics [15].

Finally, there is a further, highly speculative but intriguing, possibility. If we consider
the quasi-steady-state solutions in an ensemble {IS} of currents and form a linear combination
of many-body wavefunctions out of their respective pockets of initial conditions, the system
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with this new initial condition could possibly evolve in time into the quasi-steady state of yet
another IS , that does not belong to the original ensemble {IS}. If this happens, then the system
can fluctuate coherently between microscopic quasi-steady states with different currents and
steady-state noise is produced. This additional noise has nothing to do with the ordinary (shot)
noise due to charge quantization [16]; instead, it would be due to possible realizations of a
steady state as a linear combination of microscopic steady states corresponding to different
currents.

Let us now consider the quasi-steady state from the point of view of a practical
measurement or a time-dependent calculation. We let the system go from some initial state
that we assume belongs to a ‘pocket’ P0(|ψ(E, IS, t)〉), such that, at some later time t , a
quasi-steady state with a total current IS , across a chosen surface S, is established. Let us
then consider how we can define a conductance in this finite-system approach. Now that we
have dispensed with the infinite reservoirs, we may no longer appeal to Büttiker’s definition
of conductance, with respect to bulk electrochemical potentials of reservoirs in a multiprobe
measurement [17]. We thus fall back on Landauer’s non-invasive definition of conductance,
with respect to the electrostatic potential drop in the system [18]. The electrostatic potential
φ(r, t), subject to the boundary condition φ(r, t) → 0 as r → ∞ appropriate to our isolated
finite system, is a unique functional of the electron density ρ(r, t) and is thus unambiguously
known in the quasi-steady state, or in any other state for that matter. We take it as a physically
plausible stipulation that, for large enough electrodes, in a quasi-steady state φ will tend
(possibly within microscopic Friedel-like oscillations) to well defined values φL and φR in the
interior of the left and right electrodes of figure 1, respectively, enabling us to define a potential
difference W = φL − φR, with respect to which we may then define conductance.

Let us now briefly consider processes that would help the system establish a steady state
in the present phonon-free, microcanonical picture. The obvious ones are electron–electron
interactions. Screening keeps the electron density macroscopically constant, a condition often
referred to as charge neutrality. This effective ‘incompressibility’ of the electron gas in the
metal makes current flow somewhat analogous to water flow: local disturbances in the density
are not tolerated and heal fast. A further effect of electron–electron interactions, and electronic
U -processes in particular, is to produce relaxation of the total electron momentum in the
electrodes, a quantity which is not a constant of the motion in our finite system. We suggest,
however, an additional intrinsic mechanism that facilitates relaxation in the crucial region of
the junction. This mechanism is provided simply by the geometrical constriction experienced
by electron wavepackets as they approach the nanojunction [19]. This relaxation mechanism is
due to the wave properties of the electron wavefunctions and the resultant uncertainty principle,
and has nothing to do with electron–electron interactions. Let us assume that the nanojunction
has width w and an electron wavepacket moves into it. The wavepacket has to adjust to the
motion appropriate to the given junction geometry in a time �t ∼ h̄/�E , where �E is the
typical energy spacing of lateral modes in the constriction. With �E ∼ π2h̄2/mew

2 we find
�t ∼ mew

2/π2h̄. For a nanojunction of width w = 1 nm, �t is of the order of 1 fs. In other
words, even in the absence of inelastic effects, the mere presence of the nanojunction would
contribute to relaxation of electron momentum. Thus, this effect would seem to suggest that
even without electron–phonon or electron–electron inelastic scattering a steady state could be
reached in a nanoconstriction, with at most mean-field interactions.

All of this analysis would be worthless if in order to do time-dependent transport
calculations one had to solve the many-body time-dependent Schrödinger equation. We
conclude by showing that in the closed system of figure 1 the true many-body total current
is given exactly by the total current obtained with TDDFT [8]. This rigorous connection is
independent of whether the system has reached a steady state or not. We first note that for a



Transport in nanoscale systems: the microcanonical versus grand-canonical picture 8033

given initial condition on the many-body wavefunction, a one-to-one correspondence between
time-evolving charge density and external potential for the electron gas has been proven only
when the density goes to zero at infinity (which is the case for a finite closed system with
bound electrons) [8] or for an infinite but perfectly periodic system [20]. Let us then assume
that we have solved the time-dependent Kohn–Sham (KS) equations of TDDFT and obtained
a set of KS time-dependent one-electron orbitals [8]. Referring to figure 1, we define the KS
total current I (KS)

S by

I (KS)
S (t) =

∫
S

j(KS)(r, t) · dS =
∫

V
dr ∇ · j(KS)(r, t) (17)

where j(KS)(r, t) is the sum of expectation values of the one-electron current-density operator
in the populated KS orbitals. For densities that are non-interacting v-representable [21], the
charge density of the true many-body system, ρ(r, t), is the same as the charge density obtained
from the KS orbitals, ρ(KS)(r, t). Furthermore, ρ(KS)(r, t) and j(KS)(r, t) satisfy the continuity
equation, just like the many-body density ρ(r, t) and current density j(r, t) in equation (4).
Since ρ(KS)(r, t) = ρ(r, t), we then have ∇ · j(KS)(r, t) = ∇ · j(r, t) (even though j(KS)(r, t)
and j(r, t) need not be equal). Hence,

I (KS)
S (t) =

∫
V

dr ∇ · j(KS)(r, t) =
∫

V
dr ∇ · j(r, t) = IS(t) (18)

where IS(t), once again, is the true total many-body electron current, across an arbitrary surface
S. The above proof is valid only for a finite system because, for an infinite system, we could
not have made the transitions between surface and volume integrals above [22]. We note also
that in practical calculations, due to the non-local nature of the exchange–correlation kernel
in TDDFT, a formulation that relates the external potential directly to the current density may
be numerically more efficient. (This formulation is known as time-dependent current-density-
functional theory [23].)

In conclusion, we have analysed an alternative point of view of transport in nanoscale
systems, in which two large but finite charged electrodes discharge across a nanoscale junction.
This microcanonical formulation has key advantages. It permits the notion of a steady state
to be expressed in variational form. This variational procedure suggests a link with the notion
of entropy and a new source of steady-state noise. It also allows one to show rigorously
that the total current in a many-body system is given exactly by the corresponding quantity
in TDDFT. This correspondence puts on a rigorous footing the calculation of dynamical
transport properties in nanoscale systems by the use of effective one-electron time-dependent
Schrödinger equations, without the need to implement scattering boundary conditions. In
particular, it allows the investigation of the onset, microscopic nature and dependence on the
initial conditions of steady states, and may help tackle open questions about the assumptions
of the standard static approach to steady-state conduction.
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